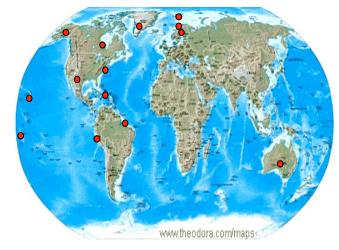
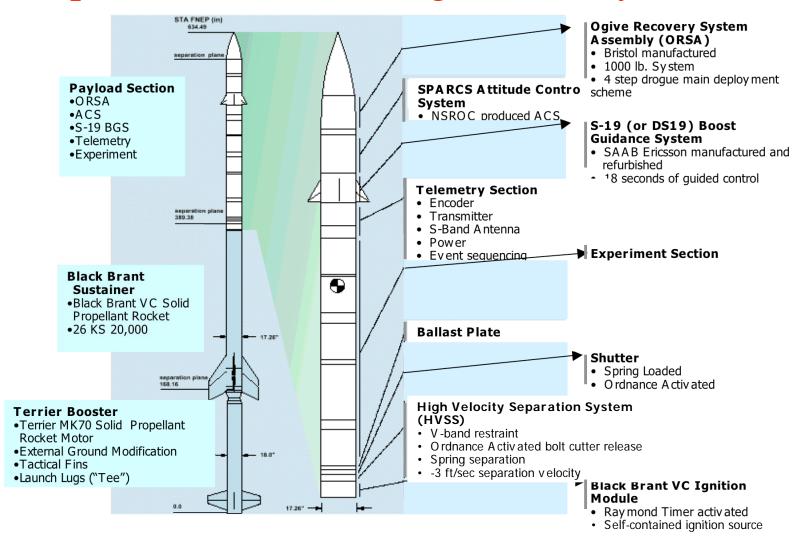


NASA SOUNDING ROCKETS PROGRAM



The Mission of the Sounding Rocket Program

- Provide quick response, cost effective suborbital access to the upper atmosphere and near-Earth space environment (90km – 1500km)
- Conduct suborbital flight operations from fixed and mobile locations around the world. We go where the science is...

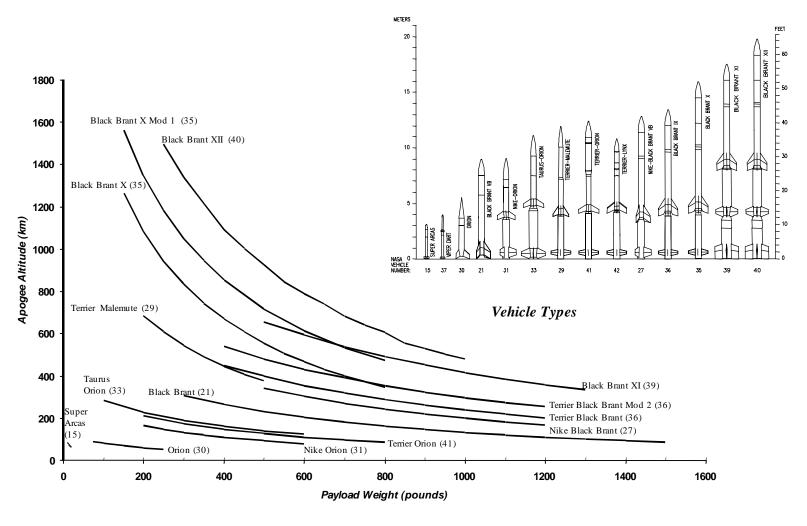


Benefits of Sounding Rockets

- >350 PhDs have been based on data obtained using NASA sounding rockets
- Sounding rockets enable new space-based sensor technologies to be demonstrated in a space environment before they are used on satellites
- Sounding rockets enable in-situ measurements in regions not accessible by balloons or satellites (fill a unique niche)
- Sounding rockets serve as valuable tools for validating and calibrating remote sensors on operational satellites (under-flight missions)
- Mobile capability allows missions to be flown where the science occurs (magnetic equator, auroral zone, southern sky, etc)
- Sounding rocket performance can be "selected" to best fit the experiment requirements (provides for efficiency)
- Quick response (prime example Super Nova 1987A)

NASA

Representative Sounding Rocket System



Sounding Rocket Launch Vehicles

Sounding Rocket Vehicles

Terrier Malemute

Terrier Orion

Black Brant IX

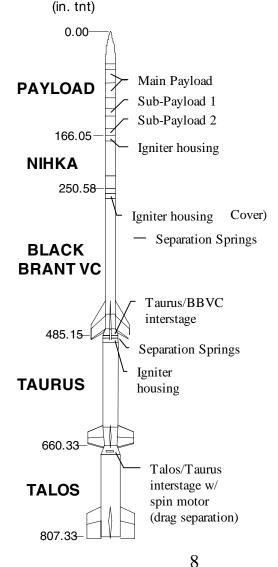
Black Brant XII

Mission Overview - Sample

PI: Dr. Paul M. Kintner, Cornell University

Scientific Objective: To investigate the primary causes of Transverse Ion Acceleration (TIA) in the topside auroral ionosphere in order

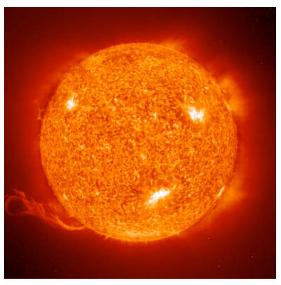
to resolve basic conflicts in the theory of TIA, in models of current-driven instabilities, and in observations of TIA.


Technical Objective: To prove the feasibility of yo-yo booms damper system and combined GPS/S-Band antenna.

Launch Date: 1/24/02

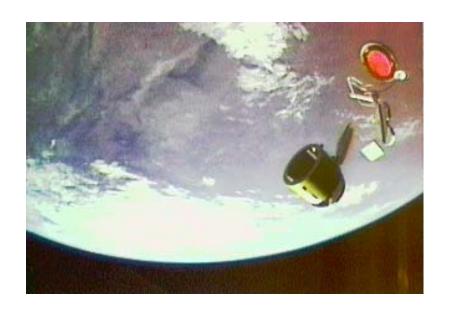
Launch Range: Poker Flats Research Range, Fairbanks, Alaska

Launch Vehicle: Black Brant XII


5/3/2004 GSFC-WFF

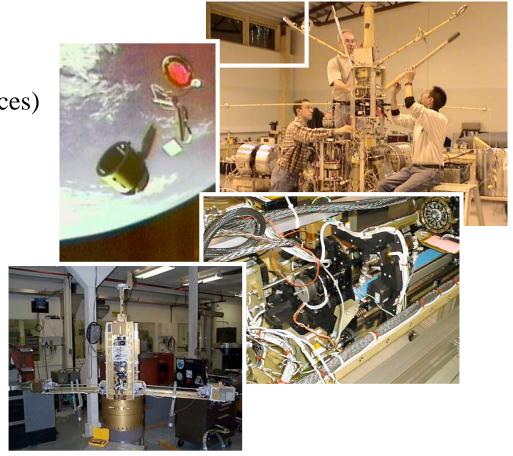
Scientific/Engineering Disciplines Supported by the NASA Sounding Rocket Program

- Geospace Sciences
- Solar Physics
- High Energy Astrophysics
- UV/Optical Astrophysics
- Microgravity
- Hypersonics



Organizations Supported by the NASA Sounding Rocket Program

- Universities
- NASA Centers
- Research Institutes
- Department of Defense



Experiments

- Astronomy (UV, X-ray, Gamma-ray, Visible, etc)
 - Spectroscopy
 - Polarimetry
- Plasma Physics (Geospace sciences)
 - Particle Detectors
 - E-field Booms
 - Magnetometers
- Microgravity
- Air Sampling
- Atmospheric Entry Vehicles

Many payloads include multiple subpayloads and 2 or more high rate telemetry links

Launch Sites

- US Fixed
 - Wallops Flight Facility
 - White Sands Missile Range
 - Poker Flat Research Range
 - Kwajalein
- Foreign Fixed
 - Sweden
 - Norway (Andoya & Svalbard)

Mobile

- Australia
- Brazil
- Kwajalein
- Puerto Rico
- Greenland
- Peru

Flight Durations

- Typical data periods only 5 to 20 minutes in length
- High altitude parachutes can be used to lengthen data collection periods to 60 min. or more
- Small rockets can be used to conduct temporal experiments enabling discrete measurements over days, weeks or even months

Potential Applications

- Collection of scientific data
 - Air sampler missions
 - Thunderstorm research
 - Other?
- Space-based instrument development
 - Limited exposure time
 - Enables system adjustments prior to incorporation into more expensive satellite mission
- Satellite calibration
 - Mobile operations can enable data collecting in regions of interest (polar, equatorial, etc.)

Enabling Technologies

5/3/2004 GSFC-WFF 15

Small, Low-cost Vehicle

- 4.5" diameter dart (non propulsive)
- 90-110 km apogee
- Low-cost telemetry
- Potential for ejectable payload with high altitude parachute
- Mission could include multiple flights over period of time

MLRS-Dart Vehicle

SubTec Technology Demonstration Payload

- Developed to provide low-cost technology test flight opportunities
- Ride share concept
- Defined experiment volume
 - Greatly reduces mission cost (minimal design)
- Reusable payload
- Water recovery off Wallops
- Could be flown at WSMR (New Mexico) or Poker Flat Research Range (Alaska)
- One or more flights per year depending on demand

High Altitude Parachutes

- Deployed at ~100 km altitude
- Slows the descent of the payload so fine resolution measurements can be made
- Keeps payload in "end down" orientation
- 72' diameter
- Nylon or Mylar construction
- Not a "new" technology

Telemetry

- Data rates currently at 10 Mb/s, with a development effort to move towards 150 Mb/s
- Video compression and wide-band transmitters to support image downlink
- Small, compact telemetry systems to fit in small packages

Mobile Range Capabilities

- Range control, radar,
 TM, and launchers
- Shifting to GPS tracking
 - Will reduce operations cost

